Bounds for eigenvalues and generalized convexity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Convexity bounds for L-functions

We prove a sharp convexity bound for L-functions, at the centre of the critical strip, under conditions weaker than those for the Selberg Class. 2000 Mathematics Subject Classification: Primary 11M41

متن کامل

Bounds for Laplacian Graph Eigenvalues

Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.

متن کامل

Guaranteed lower bounds for eigenvalues

This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on arbitrarily coarse meshes based on some approximation of the corresponding eigenfunction in the nonconforming Crouzeix-Raviart finite element space plus some postprocessing. The efficiency of the guaranteed error bounds involves the global mesh-size and is proven for the large class of graded m...

متن کامل

Convexity, Classification, and Risk Bounds

Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0-1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1963

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1963.13.1031